
FastaChar Documentation
Release 0.2.4

Lucas Merckelbach, Luisa Borges

Jul 21, 2020

Contents:

1 What is Fastachar for and how to use it? 3

2 Installation 9

3 Programming with fastachar 11

4 Regular expressions in FastaChar 15

5 References to the fastachar source code 17

Bibliography 19

i

ii

FastaChar Documentation, Release 0.2.4

This manual covers the use of the program Fastachar.

FastaChar is a software developed to extract molecular diagnostic characters from one or several taxonomically-
informative DNA markers of a selected taxon compared to those of other taxa (as many as required by the user)
in a single step. The input data consists of a single file with aligned sequences in the fasta format, which can be
created using alignment software such as MEGA or GENEIOUS. The software is described by Merckelbach and
Borges (2020) [Merckelbach2020].

The software was developed specifically to determine molecular diagnostic characters for the description of Lyrodus
mersinensis by Borges and Merckelbach (2018) [BORGES2018], but it can be applied to any taxon. Since FastaChar
is an intuitive and easy-to-use software, we hope it helps to standardize the use of molecular data and stimulate
researchers to proceed to the final step of molecular taxonomy, that is, describe the new species.

Fastachar is written in Python3, and is released as open source software under the GPLv3 GNU Public License. The
installation of the program is (also) covered in the README.rst file, that comes with the source code.

Contents: 1

FastaChar Documentation, Release 0.2.4

2 Contents:

CHAPTER 1

What is Fastachar for and how to use it?

Fastachar is a graphical user interface to the fastachar python module that allows a user to compare pre-aligned DNA
sequences. Sequences of different markers must be analysed individually (not concatenated). A typical application is
to distinguish one species from a set of different, but closely related species, based on DNA sequences.

1.1 Example

Let’s assume we have DNA sequences from specimens of cryptic species (a pair or more). After the discovery of
the new species it is paramount to carry out the final step in taxonomy, their description. However, in this case, the
morphological characters per se cannot be used to describe the new cryptic species. Therefore, molecular diagnostic
characters (present in all members of a taxon and absent in all other taxa) can be obtained from the DNA sequences.
These characters can be used to describe a species in a similar fashion to traditional morphological diagnostic charac-
ters used for species descriptions. To that end, the algorithm compares two sets of sequences, with one set consisting
of a number of sequences of a taxon (e.g., a new species) and the other consisting of sequences of other taxa (e.g.,
congeneric or confamilial species). For each homologous position in the alignment (pre-aligned sequences), the algo-
rithm tests for all characters of the sequence in the first set to be the same and to be different from all other characters
of the sequences in the other set. When these conditions are met, the character in that position (nucleotide or amino
acid) is marked as a molecular diagnostic character.

1.2 Preparation

The input for fastachar is a list of DNA sequences, formatted in the fasta format (see also https://en.wikipedia.org/
wiki/FASTA_format). The program assumes that the DNA sequences that are going to be compared already:

• are aligned, and

• written into a single file in fasta format.

There are several software programs to align sequences (e.g. Mega and Geneious).

3

https://en.wikipedia.org/wiki/FASTA_format
https://en.wikipedia.org/wiki/FASTA_format

FastaChar Documentation, Release 0.2.4

1.3 Running Fastachar

On Windows, fastachar is run by executing the fastachar.exe, and on Linux, it is run by executing fastachar from the
terminal console. Once started, a new window appears with three empty text boxes, labelled “Unselected species”,
“Selected species list A” and “Selected species list B”, respectively. Below, there is a set of radio buttons to select the
comparison operation, a button to execute the comparison (“Process”) and a button (“Clear output”) to clear the output
that is generated and shown in the bottom text box, see the Figure.

Fig. 1: Figure 1: Main window of Fastachar

1.3.1 Opening a fasta file

To start working, a fasta file is opened using:

File
Open fasta file

and select a fasta file from the dialogue offered. If a valid fasta file is read, the text box Unselected species is populated
with the names of the species found.

4 Chapter 1. What is Fastachar for and how to use it?

FastaChar Documentation, Release 0.2.4

Alternatively, a fasta file can be opened using:

File
Open fasta file /w preview

This allows the user to specify how the fastachar should interpret the header strings that precedes each string of
sequence data. When opening a file with preview, first a pop-up window appears, similar to the one below

Fig. 2: Figure 2: A pop-up window allowing to specify regular expressions for parsing the fasta header strings

This window provides the user with a way to specify how the header strings are to be parsed. All three fields accept
regular expressions, see Regular expressions in FastaChar for more information on regular expressions and a worked
example.

• Header format:: The Header format describes how each header is structured and must contain the strings
{ID} and {SPECIES}. In the example given, the id precedes the species name and a space or an underscore
separates the two strings.

• Regex ID:: The value for the entry Regex ID is substituted for the string {ID} in the header format string. As
this string should match any of the lab codes or IDs used in the fasta file headers, it will usually be a regular
expresssion.

• Regex SPECIES:: The value for the entry Regex SPECIES is substituted for the string {SPECIES} in the
header format string. Also this string will usually be a regular expresssion.

After editing the regular expressions, the button Cancel cancels the modification, whereas the button OK accepts them.
The button Preview file provides the user with a file chooser dialogue to select a fasta file. After this selection, the file
is opened, and parsed. Each header is interpreted and how it fares is shown in a separate window:

In the example of Figure 3, we see in the left column (Header) the string as it appears in the fasta file. In the middle
column, the parsed ID string is shown, and in the right column the species name. If the parsing fails completely,
dashes only are shown. If the regular expressions do not match the format of the header strings, erroneous results are
displayed.

Note: If some how the program is not capable of parsing the strings correctly, a work around would be to describe
the header string as {SPECIES}{ID}, leave the regex for the ID blank, and for the SPECIES a regular expression .+ is
prescribed. FastaChar will now ignore any id’s and consider the header of each sequence as a separate species.

1.3.2 Selecting species for lists A and B

Select a species name by left-clicking. A multiple selection can be made by clicking again with ctrl pressed, which
also selects the item clicked. If instead of ctrl the shift key is pressed, all the items in between are selected as well.

1.3. Running Fastachar 5

FastaChar Documentation, Release 0.2.4

Fig. 3: Figure 3: Popup window showing the results of the header parsing.

In order to move them into either list A or list B, drag the selected items from the Unselected species text box to the
target text box whilst holding the right-mouse button pressed.

1.3.3 Selecting the operation

Once the selection is made, the comparison operation is to be selected. Two operations are implemented:

• Determining MDCs for species list A

• Determining potential MDCs for species list A

After selecting the operation, the operation is executed by clicking the Process button, and a report appears in the
lower text box, see Figure 1.

The output lists the path of the input fasta file (not shown in Figure 1), the species’ names and IDs of the sequences in
list A, and list B. If the species in list A have any molecular diagnostic characters, then they are listed by their position,
their value, and the values of the sequences in list B for the same position. Note that masked characters, if any, are left
blank.

A molecular diagnostic character is the character at position 𝑘 of the sequences in list A, for which holds that:

1) all characters in A are identical for this position, and

2) all characters in B for are different from those in A for this position.

For a potential diagnostic character, the second condition is met only. For a precise definition, the user is referred to
the accompanying paper, see [Merckelbach2020].

6 Chapter 1. What is Fastachar for and how to use it?

FastaChar Documentation, Release 0.2.4

1.3.4 Case files

To facilitate repeated operations on a specific file, or storing the specifics of a case for future reference, a so-called
case file can be used. When writing a case file via:

File
Save case file

the following information can be stored:

• the fasta file read

• the regular expressions used for reading

• the selection made

• the operation selected.

A previously saved case file can then be loaded by

File
load case file

1.3.5 Output

Multiple operations as well as species selections can be processed and the output will be appended to the lowest text
box. The output can be cleared using the Clear output button.

To save the output to file, select from the menu:

Output
Save report (txt)

to write the output of the last operation as shown in a text file, or

Output
Save report (xls)

to write the output in an excel file, with a tab for each processing operation.

1.3.6 Help

The user interface also provides help and information on the licensing from the menu entry:

Output
Help

and

Output
About

respectively.

1.3. Running Fastachar 7

FastaChar Documentation, Release 0.2.4

8 Chapter 1. What is Fastachar for and how to use it?

CHAPTER 2

Installation

Fastachar is written in Python3 and should run on all major platforms, including linux and windows. In order to run
Fastachar a working copy of the python3 interpreter is required (including the tkinter windowing toolkit).

2.1 Linux

As of the beginning of 2020, support for python2 is officially dropped. This means that most likely python points to
python version 3. In the documentation below, python3 is used explicitly, but on recent linux distributions, the ‘3’ can
probably be left out.

Usually python3 is included in most linux distributions. A simple test is to open a terminal and try to run python by:

$ python3

which should give you the python interpreter (including its version number). If it is verified that this works, test for
the presence of the tkinter windowing toolkit:

>>> import tkinter

If this does not raise an exception, then you are all good and you can exit the interpreter (ctl-D). Otherwise you will
need to install tkinter yourself, which is probably best done via your distribution’s package manager.

Fastachar can be installed from pypi, using pip from the command line:

$ pip3 install fastachar

or from a tar-gzipped file downloaded from FastaChar github repository. After extracting the .tgz file and cd-ing into
the newly created directory, you run:

$ python3 setup.py build && sudo python3 setup.py install && sudo python3 setup.py
→˓clean

Either installation method for Fastachar should take care of installing the dependencies (xlwt) correctly.

9

http://github.com/smerckel/fastachar

FastaChar Documentation, Release 0.2.4

Note: In recent versions of linux python3 may be installed as default, and commands such as pip3 and python3
should be spelled without the suffix 3.

2.2 Windows

Usually python is not installed by default on a Windows computer and needs to be installed by the user. In this readme
the official python distribution will be used, but other python packages exist and may work equally well, too.

To install Python3, visit https://www.python.org/downloads/windows/ and select the (latest) python3 version. (Do not
select Python2 as this is not supported by Fastachar.) When downloading the Python3 distribution, make sure you
select the proper verion for your computer hardware:

• Download Windows x86 executable installer for a 32 bit system

• Download Windows x86-64 executable installer for a 64 bit system.

You can check from the control panel/system which version your computer is running on, when in doubt.

When, the file is downloaded, run it and follow the default installation (which includes pip and tkinter, which are both
needed for successful operation of Fastachar). It is recommend however to check the box to add Python3 to the PATH
environment variable.

Once Python3 is installed, Fastachar can be installed using pip. This requires a dos prompt (go to Start/search for
programs and enter cmd, which should give an entry to the dos-command line. Type in the dos-prompt:

pip3 install fastachar

or:

py -3 pip -m install fastachar

which should also install the dependency xlwt.

10 Chapter 2. Installation

https://www.python.org/downloads/windows/

CHAPTER 3

Programming with fastachar

The graphical user interface is intended to provide easy access to the functionality offered by the fastachar module.
Rather than using the graphical interface, the user can also create her/his own python scripts.

3.1 Example script

1 # Example script how to do an analysis of a fasta file accessing the
2 # fasta module directly, and not using a graphical interface. The
3 # example script reads a fasta file, and divides all the species in a
4 # two sets, one that with species names that match a regular
5 # expression, and a set with sequences that does not match the regular
6 # expression. Then, for set A, the differences within this set as well
7 # as its unique characters are computed. Finally, the results are
8 # reported and dumped on the terminal.
9 import sys

10 sys.path.insert(0, '..')
11 import fastachar
12

13

14 filename = "../data/COI_sequences_MUSCLE.fas"
15

16 alignment = fastachar.fasta_io.Alignment()
17 # The sequences in this alignemnt typically look like this:
18 # >WBET001_Nototeredo_norvagica_Ms_TK
19

20 # that is, an ID, followed by an underscore and a species name. In
21 # order to parse this sequence header correctly, we must tell the
22 # alignment reader how this header is constructed.
23 # See http://www.rexegg.com/regex-quickstart.html for a reference table.
24 alignment.set_fasta_hdr_fmt(header_format='{ID}_{SPECIES}',
25 IDregex = '[A-Z0-9]+',
26 SPECIESregex = '[A-Z][a-z_]+')
27

(continues on next page)

11

FastaChar Documentation, Release 0.2.4

(continued from previous page)

28 errno, errmesg = alignment.load(filename)
29 if errno: # we have a non-zero error, so something went wrong. Print
30 # the corresponding message to give us a clue
31 print(errmesg)
32 else:
33 # all well.
34 species = alignment.get_species_list()
35 print("Species in this file:")
36 for s in species:
37 print("{:30s}".format(s))
38 print()
39

40 # Divide all the species in two groups, set A that matches the regex,
41 # and set B that does not. Notice we can use regular expressions here too.
42 lst_A, lst_B = alignment.select_two_sequence_sets("Lyrodus.pedicellatus.*[mM][Ss]

→˓")
43

44 # We could also use other methods to extract specific sequences.
45 # Let's investigate Lyrodus pedicellatus. We suspect that the
46 # sequences found in Turkey, they end with TK might be different
47 # from those found in France (ending in Fr). So we select all
48 # Lyrodus species, but exclude those ending in TK, for lst_A, and
49 # do the same for lst_B, but invert the selection.
50

51 lst_A = alignment.select_sequences(regex='Lyrodus[_]pedicellatus.*',
52 invert=False,
53 exclude='.*[Tt][Kk]')
54 lst_B = alignment.select_sequences(regex='Lyrodus[_]pedicellatus.*',
55 invert=True,
56 exclude='.*[Tt][Kk]')
57

58

59 S = fastachar.fasta_logic.SequenceLogic()
60

61 # Compute the unique characters in A with respect to B
62 method = "MDC"
63

64 mcds = S.compute_mdcs(lst_A, lst_B, method)
65

66 # Report the results to the terminal.
67 reportxls = fastachar.fasta_io.ReportXLS()
68 report = fastachar.fasta_io.Report(filename, reportxls = reportxls)
69 report.report_header(lst_A, lst_B, method)
70 report.report_mdcs("List A", lst_A, lst_B, mcds, method)
71

72 # compute non unique charachters in B
73 nucs = S.list_non_unique_characters_in_set(lst_B)
74

75 report.report_header(lst_A, lst_B, method='nucs')
76 report.report_nucs("List B", lst_B, nucs)
77

78 #reportxls.save('test.xls')
79

80

81

82

12 Chapter 3. Programming with fastachar

FastaChar Documentation, Release 0.2.4

The advantage of using scripts such as the one above, is that it is easier to redo an analysis, modify an existing one, or
batch analyses a number of fasta files.

The API for the class SequenceData can be consulted modindex.

3.1. Example script 13

FastaChar Documentation, Release 0.2.4

14 Chapter 3. Programming with fastachar

CHAPTER 4

Regular expressions in FastaChar

4.1 What is a regular expression anyway?

Adapted from wikipedia :

The phrase regular expressions, also called regexes, is often used to mean the specific, standard textual
syntax for representing patterns for matching text. Each character in a regular expression (that is, each
character in the string describing its pattern) is either a metacharacter, having a special meaning, or a
regular character that has a literal meaning.

For example, in the regex ‘a.’, a is a literal character which matches just ‘a’, while ‘.’ is a metacharacter
that matches every character except a newline. Therefore, this regex matches, for example, ‘a ‘, or ‘ax’,
or ‘a0’. Together, metacharacters and literal characters can be used to identify text of a given pattern, or
process a number of instances of it.

Pattern matches may vary from a precise equality to a very general similarity, as controlled by the
metacharacters. For example, ‘.’ is a very general pattern, [a-z] (match all lower case letters from ‘a’
to ‘z’) is less general and a is a precise pattern (matches just ‘a’). The metacharacter syntax is designed
specifically to represent prescribed targets in a concise and flexible way to direct the automation of text
processing of a variety of input data, in a form easy to type using a standard ASCII keyboard.

In FastaChar we use regular expressions to parse the header strings belonging to the sequences in fasta files.

Extensive information on regular expression can be found in sources on the internet, for example https://www.rexegg.
com/regex-quickstart.html.

4.2 How do we use regular expressions in FastaChar?

When FastaChar reads a fasta file with aligned sequences, this file can have a number of sequences pertaining to one
taxon. For the analysis we would like to compare the sequences of this taxon with those of other taxa. In order to
select all the sequences of a given taxon and label them with one name, the species name, FastaChar needs some way
of knowing how to interpret the headers in the fasta files. This may be best illustrated using an example.

15

https://www.rexegg.com/regex-quickstart.html
https://www.rexegg.com/regex-quickstart.html

FastaChar Documentation, Release 0.2.4

4.2.1 Example

Let us say we have a fasta file with the following entry:

>WBET001_Nototeredo_norvagica_Ms_TK
TACTTTGTATTTTATTTTTTCTATTTGAGCGGGTTTGGT.....

Here we see that the first line is the header, as it starts with a “>”. The header string is aparently composed of the lab
id followed by the species description, using an underscore to separate them. The header format now becomes:

{ID}_{SPECIES}

In order to specify the regular expression for the ID string, we need to know how the other id’s in this file look like. If
we know that all lab codes start with ‘WBET’, we could specify something like:

WBET[0-9]+

which should be interpreted as the id starts with WBET and is followed by at least one numerical, but nothing else.
THe WBET part is taken literal. The part between [] represents the position of one single character. In this case this
character can be any in the range from 0 to 9. The + means that the preceding character (or possible characters) can
be repeated.

This would work for this example, but when a different file is opened, then this expression might not match. As an
alternative approach we could be more general. So we may say that the id may contain alphanumeric characters and a
period, and at least one character. This translates to:

[A-Za-z0-9\.]+

Now the first character can be anything from upper case and lower case letters that appear in the (English) alphabet,
any digits from 0 - 9 and a period. The symbol . has a special meaning in regular expressions, so that if the literal
symbol is meant, it must be escaped by a backslash. What follows of the id string should be a character that follows
the same restriction as the first character does, as indicated by the + symbol.

This representation would match our example WBTE001, but also PC025239.1, or ZSM20100595. Similar consider-
ations apply to how the regular expression should be described for the species string.

4.3 Can we disable the use of regular expressions?

It can be, of course, that species names and lab codes within a single fasta file do not adhere to a specific format, or
they are formatted in such a way that it is not easy to find a regular expression pattern that works for all entries. The
solution in such a case would be to specify a regular expression that captures all.

The header format then reads:

{SPECIES}

the field for the regular expression for the ID or lab code, Regex ID, can be left empty, and the regular expression for
the species, Regex SPECIES becomes:

.*

which captures all characters.

16 Chapter 4. Regular expressions in FastaChar

CHAPTER 5

References to the fastachar source code

• genindex

• modindex

• search

17

FastaChar Documentation, Release 0.2.4

18 Chapter 5. References to the fastachar source code

Bibliography

[Merckelbach2020] Merckelbach,L.M., & Borges, L. M. S. (2020). Make every species count: fastachar software for
rapid determination of molecular diagnostic haracters to describe species. Molecular Ecology Resources.
00:1–8. https://doi.org/10.1111/1755-0998.13222.

[BORGES2018] Borges, L. M. S., & Merckelbach, L. M. (2018). Lyrodus mersinensis sp. nov. (Bivalvia: Teredinidae)
another cryptic species in the Lyrodus pedicellatus (Quatrefages, 1849) complex. Zootaxa, 4442(3),
441–457. https://doi.org/10.11646/zootaxa.4442.3.6

19

https://doi.org/10.1111/1755-0998.13222
https://doi.org/10.11646/zootaxa.4442.3.6

	What is Fastachar for and how to use it?
	Installation
	Programming with fastachar
	Regular expressions in FastaChar
	References to the fastachar source code
	Bibliography

