

FastaChar’s documentation

This manual covers the use of the program Fastachar.

FastaChar is a software developed to extract molecular diagnostic characters from
one or several taxonomically-informative DNA markers of a selected taxon
compared to those of other taxa (as many as required by the user) in a single step.
The input data consists of a single file with aligned sequences in the fasta format,
which can be created using alignment software such as MEGA or
GENEIOUS. The software is described by Merckelbach and Borges (2020) [Merckelbach2020].

The software was developed specifically to determine molecular
diagnostic characters for the description of Lyrodus mersinensis by
Borges and Merckelbach (2018) [BORGES2018], but it can be applied to
any taxon. Since FastaChar is an intuitive and easy-to-use software, we
hope it helps to standardize the use of molecular data and stimulate
researchers to proceed to the final step of molecular taxonomy, that
is, describe the new species.

Fastachar is written in Python3, and is released as open source
software under the GPLv3 GNU Public License. The installation of the
program is (also) covered in the README.rst file, that comes with the source
code.

Contents:

	What is Fastachar for and how to use it?

	Installation

	Programming with fastachar

	Regular expressions in FastaChar

References to the fastachar source code

	Index

	Module Index

	Search Page

	Merckelbach2020

	Merckelbach,L.M., & Borges, L. M. S. (2020). Make every species count:
fastachar software for rapid determination of
molecular diagnostic haracters to describe
species.
Molecular Ecology Resources. 00:1–8.
https://doi.org/10.1111/1755-0998.13222.

	BORGES2018

	Borges, L. M. S., & Merckelbach, L. M. (2018). Lyrodus mersinensis sp.
nov. (Bivalvia: Teredinidae) another cryptic species in the Lyrodus
pedicellatus (Quatrefages, 1849) complex. Zootaxa, 4442(3), 441–457.
https://doi.org/10.11646/zootaxa.4442.3.6

What is Fastachar for and how to use it?

Fastachar is a graphical user interface to the fastachar python module
that allows a user to compare pre-aligned DNA sequences. Sequences of different
markers must be analysed individually (not concatenated). A typical application is to
distinguish one species from a set of different, but closely related species,
based on DNA sequences.

Example

Let’s assume we have DNA sequences from specimens of cryptic species
(a pair or more). After the discovery of the new species it is
paramount to carry out the final step in taxonomy, their description.
However, in this case, the morphological characters per se cannot be
used to describe the new cryptic species. Therefore, molecular
diagnostic characters (present in all members of a taxon and absent in
all other taxa) can be obtained from the DNA sequences. These
characters can be used to describe a species in a similar fashion to
traditional morphological diagnostic characters used for species
descriptions. To that end, the algorithm compares two sets of
sequences, with one set consisting of a number of sequences of a taxon
(e.g., a new species) and the other consisting of sequences of other
taxa (e.g., congeneric or confamilial species). For each homologous
position in the alignment (pre-aligned sequences), the algorithm tests
for all characters of the sequence in the first set to be the same and
to be different from all other characters of the sequences in the
other set. When these conditions are met, the character in that
position (nucleotide or amino acid) is marked as a molecular
diagnostic character.

Preparation

The input for fastachar is a list of DNA sequences, formatted in the
fasta format (see also
https://en.wikipedia.org/wiki/FASTA_format). The program assumes that
the DNA sequences that are going to be compared already:

	are aligned, and

	written into a single file in fasta format.

There are several software programs to align sequences (e.g. Mega and Geneious).

Running Fastachar

On Windows, fastachar is run by executing the fastachar.exe, and on
Linux, it is run by executing fastachar from the terminal
console. Once started, a new window appears with three empty text
boxes, labelled “Unselected species”, “Selected species list A” and
“Selected species list B”,
respectively. Below, there is a set of radio buttons to select the
comparison operation, a button to execute the comparison (“Process”)
and a button (“Clear output”) to clear the output that is generated
and shown in the bottom text box, see the Figure.

[image: _images/main_window.png]
Figure 1: Main window of Fastachar

Opening a fasta file

To start working, a fasta file is opened using:

File
 └── Open fasta file

and select a fasta file from the dialogue offered. If a valid fasta
file is read, the text box Unselected species is populated with the names of
the species found.

Alternatively, a fasta file can be opened using:

File
 └── Open fasta file /w preview

This allows the user to specify how the fastachar should interpret
the header strings that precedes each string of sequence data. When
opening a file with preview, first a pop-up window appears, similar to
the one below

[image: _images/regex.png]
Figure 2: A pop-up window allowing to specify regular expressions for parsing
the fasta header strings

This window provides the user with a way to specify how the header
strings are to be parsed. All three fields accept regular expressions,
see Regular expressions in FastaChar for more information on
regular expressions and a worked example.

	
	Header format::

	The Header format describes how each header is structured and must
contain the strings {ID} and {SPECIES}. In the example given, the id
precedes the species name and a space or an underscore separates the
two strings.

	
	Regex ID::

	The value for the entry Regex ID is substituted for the string
{ID} in the header format string. As this string should match any of
the lab codes or IDs used in the fasta file headers, it will usually
be a regular expresssion.

	
	Regex SPECIES::

	The value for the entry Regex SPECIES is substituted for the string
{SPECIES} in the header format string. Also this string will usually
be a regular expresssion.

After editing the regular expressions, the button Cancel cancels
the modification, whereas the button OK accepts them. The button
Preview file provides the user with a file chooser dialogue to select a fasta
file. After this selection, the file is opened, and parsed. Each
header is interpreted and how it fares is shown in a separate window:

[image: _images/parsing.png]
Figure 3: Popup window showing the results of the header parsing.

In the example of Figure 3, we see in the left column (Header) the
string as it appears in the fasta file. In the middle column, the
parsed ID string is shown, and in the right column the species
name. If the parsing fails completely, dashes only are shown. If the
regular expressions do not match the format of the header strings,
erroneous results are displayed.

Note

If some how the program is not capable of parsing the strings
correctly, a work around would be to describe the header string as
{SPECIES}{ID}, leave the regex for the ID blank, and for the
SPECIES a regular expression .+ is prescribed. FastaChar will now
ignore any id’s and consider the header of each sequence as a
separate species.

Selecting species for lists A and B

Select a species name by left-clicking. A multiple selection can be
made by clicking again with ctrl pressed, which also selects the
item clicked. If instead of ctrl the shift key is pressed, all the
items in between are selected as well.

In order to move them into either list A or list B, drag the
selected items from the Unselected species text box to the target text box
whilst holding the right-mouse button pressed.

Selecting the operation

Once the selection is made, the comparison operation is to be
selected. Two operations are implemented:

	Determining MDCs for species list A

	Determining potential MDCs for species list A

After selecting the operation, the operation is executed by
clicking the Process button, and a report appears in the lower text
box, see Figure 1.

The output lists the path of the input fasta file (not shown in Figure
1), the species’ names and IDs of the sequences in list A, and
list B. If the species in list A have any molecular diagnostic
characters, then they are listed by their position, their value, and
the values of the sequences in list B for the same position. Note that
masked characters, if any, are left blank.

A molecular diagnostic character is the character at position
\(k\) of the sequences in list A, for which holds that:

	all characters in A are identical for this position, and

	all characters in B for are different from those in A for this
position.

For a potential diagnostic character, the second condition is met
only. For a precise definition, the user is referred to the
accompanying paper, see [Merckelbach2020].

Case files

To facilitate repeated operations on a specific file, or storing the
specifics of a case for future reference, a so-called case file can be
used. When writing a case file via:

File
 └── Save case file

the following information can be stored:

	the fasta file read

	the regular expressions used for reading

	the selection made

	the operation selected.

A previously saved case file can then be loaded by

File
 └── load case file

Output

Multiple operations as well as species selections can be processed and
the output will be appended to the lowest text box. The output can be
cleared using the Clear output button.

To save the output to file, select from the menu:

Output
 └── Save report (txt)

to write the output of the last operation as shown in a text file, or

Output
 └── Save report (xls)

to write the output in an excel file, with a tab for each processing
operation.

Help

The user interface also provides help and information on the licensing
from the menu entry:

Output
 └── Help

and

Output
 └── About

respectively.

Installation

Fastachar is written in Python3 and should run on all major
platforms, including linux and windows. In order to run Fastachar a
working copy of the python3 interpreter is required (including the
tkinter windowing toolkit).

Linux

As of the beginning of 2020, support for python2 is officially
dropped. This means that most likely python points to python
version 3. In the documentation below, python3 is used explicitly, but
on recent linux distributions, the ‘3’ can probably be left out.

Usually python3 is included in most linux distributions. A simple test
is to open a terminal and try to run python by:

$ python3

which should give you the python interpreter (including its version
number). If it is verified that this works, test for the presence of
the tkinter windowing toolkit:

>>> import tkinter

If this does not raise an exception, then you are all good and you can
exit the interpreter (ctl-D). Otherwise
you will need to install tkinter yourself, which is probably best done
via your distribution’s package manager.

Fastachar can be installed from pypi, using pip from the command
line:

$ pip3 install fastachar

or from a tar-gzipped file downloaded from FastaChar github repository [http://github.com/smerckel/fastachar]. After extracting
the .tgz file and cd-ing into the newly created directory, you run:

$ python3 setup.py build && sudo python3 setup.py install && sudo python3 setup.py clean

Either installation method for Fastachar should take care of
installing the dependencies (xlwt) correctly.

Note

In recent versions of linux python3 may be installed as
default, and commands such as pip3 and python3 should be
spelled without the suffix 3.

Windows

Usually python is not installed by default on a Windows computer and
needs to be installed by the user. In this readme the official python
distribution will be used, but other python packages exist and may
work equally well, too.

To install Python3, visit https://www.python.org/downloads/windows/
and select the (latest) python3 version. (Do not select Python2 as
this is not supported by Fastachar.) When downloading the Python3
distribution, make sure you select the proper verion for your computer
hardware:

	Download Windows x86 executable installer for a 32 bit system

	Download Windows x86-64 executable installer for a 64 bit system.

You can check from the control panel/system which version your
computer is running on, when in doubt.

When, the file is downloaded, run it and follow the default
installation (which includes pip and tkinter, which are both
needed for successful operation of Fastachar). It is recommend
however to check the box to add Python3 to the PATH environment variable.

Once Python3 is installed, Fastachar can be installed using
pip. This requires a dos prompt (go to Start/search for programs and
enter cmd, which should give an entry to the dos-command line. Type
in the dos-prompt:

pip3 install fastachar

or:

py -3 pip -m install fastachar

which should also install the dependency xlwt.

Programming with fastachar

The graphical user interface is intended to provide easy access to the
functionality offered by the fastachar module. Rather than using the
graphical interface, the user can also create her/his own python scripts.

Example script

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

	# Example script how to do an analysis of a fasta file accessing the
fasta module directly, and not using a graphical interface. The
example script reads a fasta file, and divides all the species in a
two sets, one that with species names that match a regular
expression, and a set with sequences that does not match the regular
expression. Then, for set A, the differences within this set as well
as its unique characters are computed. Finally, the results are
reported and dumped on the terminal.
import sys
sys.path.insert(0, '..')
import fastachar

filename = "../data/COI_sequences_MUSCLE.fas"

alignment = fastachar.fasta_io.Alignment()
The sequences in this alignemnt typically look like this:
>WBET001_Nototeredo_norvagica_Ms_TK

that is, an ID, followed by an underscore and a species name. In
order to parse this sequence header correctly, we must tell the
alignment reader how this header is constructed.
See http://www.rexegg.com/regex-quickstart.html for a reference table.
alignment.set_fasta_hdr_fmt(header_format='{ID}_{SPECIES}',
 IDregex = '[A-Z0-9]+',
 SPECIESregex = '[A-Z][a-z_]+')

errno, errmesg = alignment.load(filename)
if errno: # we have a non-zero error, so something went wrong. Print
 # the corresponding message to give us a clue
 print(errmesg)
else:
 # all well.
 species = alignment.get_species_list()
 print("Species in this file:")
 for s in species:
 print("{:30s}".format(s))
 print()

 # Divide all the species in two groups, set A that matches the regex,
 # and set B that does not. Notice we can use regular expressions here too.
 lst_A, lst_B = alignment.select_two_sequence_sets("Lyrodus.pedicellatus.*[mM][Ss]")

 # We could also use other methods to extract specific sequences.
 # Let's investigate Lyrodus pedicellatus. We suspect that the
 # sequences found in Turkey, they end with TK might be different
 # from those found in France (ending in Fr). So we select all
 # Lyrodus species, but exclude those ending in TK, for lst_A, and
 # do the same for lst_B, but invert the selection.

 lst_A = alignment.select_sequences(regex='Lyrodus[_]pedicellatus.*',
 invert=False,
 exclude='.*[Tt][Kk]')
 lst_B = alignment.select_sequences(regex='Lyrodus[_]pedicellatus.*',
 invert=True,
 exclude='.*[Tt][Kk]')

 S = fastachar.fasta_logic.SequenceLogic()

 # Compute the unique characters in A with respect to B
 method = "MDC"

 mcds = S.compute_mdcs(lst_A, lst_B, method)

 # Report the results to the terminal.
 reportxls = fastachar.fasta_io.ReportXLS()
 report = fastachar.fasta_io.Report(filename, reportxls = reportxls)
 report.report_header(lst_A, lst_B, method)
 report.report_mdcs("List A", lst_A, lst_B, mcds, method)

 # compute non unique charachters in B
 nucs = S.list_non_unique_characters_in_set(lst_B)

 report.report_header(lst_A, lst_B, method='nucs')
 report.report_nucs("List B", lst_B, nucs)

 #reportxls.save('test.xls')

The advantage of using scripts such as the one above, is that it is
easier to redo an analysis, modify an existing one, or batch analyses
a number of fasta files.

The API for the class SequenceData can be consulted Module Index.

Regular expressions in FastaChar

What is a regular expression anyway?

Adapted from wikipedia :

The phrase regular expressions, also called regexes, is often used to
mean the specific, standard textual syntax for representing patterns
for matching text. Each character in a regular expression (that is, each
character in the string describing its pattern) is either a
metacharacter, having a special meaning, or a regular character that
has a literal meaning.

For example, in the regex ‘a.’, a is a literal
character which matches just ‘a’, while ‘.’ is a metacharacter that
matches every character except a newline. Therefore, this regex
matches, for example, ‘a ‘, or ‘ax’, or ‘a0’. Together, metacharacters
and literal characters can be used to identify text of a given
pattern, or process a number of instances of it.

Pattern matches may vary from a precise equality to a very general similarity, as
controlled by the metacharacters. For example, ‘.’ is a very general
pattern, [a-z] (match all lower case letters from ‘a’ to ‘z’) is less
general and a is a precise pattern (matches just ‘a’). The
metacharacter syntax is designed specifically to represent prescribed
targets in a concise and flexible way to direct the automation of text
processing of a variety of input data, in a form easy to type using a
standard ASCII keyboard.

In FastaChar we use regular expressions to parse the header
strings belonging to the sequences in fasta files.

Extensive information on regular expression can be found in sources on
the internet, for example
https://www.rexegg.com/regex-quickstart.html.

How do we use regular expressions in FastaChar?

When FastaChar reads a fasta file with aligned sequences, this
file can have a number of sequences pertaining to one taxon. For the
analysis we would like to compare the sequences of this taxon with
those of other taxa. In order to select all the sequences of a given
taxon and label them with one name, the species name, FastaChar
needs some way of knowing how to interpret the headers in the fasta
files. This may be best illustrated using an example.

Example

Let us say we have a fasta file with the following entry:

>WBET001_Nototeredo_norvagica_Ms_TK
TACTTTGTATTTTATTTTTTCTATTTGAGCGGGTTTGGT.....

Here we see that the first line is the header, as it starts with a
“>”. The header string is aparently composed of the lab id followed by
the species description, using an underscore to separate them. The
header format now becomes:

{ID}_{SPECIES}

In order to specify the regular expression for the ID string, we need
to know how the other id’s in this file look like. If we know that all
lab codes start with ‘WBET’, we could specify something like:

WBET[0-9]+

which should be interpreted as the id starts with WBET and is followed
by at least one numerical, but nothing else. THe WBET part is taken
literal. The part between [] represents the position of one single
character. In this case this character can be any in the range from 0 to 9. The +
means that the preceding character (or possible characters) can be repeated.

This would work for this example, but when a different file is opened,
then this expression might not match. As an alternative approach we
could be more general. So we may say that the id may contain
alphanumeric characters and a period, and at least one character. This
translates to:

[A-Za-z0-9\.]+

Now the first character can be anything from upper case and lower case
letters that appear in the (English) alphabet, any digits from 0 - 9
and a period. The symbol . has a special meaning in regular
expressions, so that if the literal symbol is meant, it must be
escaped by a backslash. What follows of the id string should be a
character that follows the same restriction as the first character
does, as indicated by the + symbol.

This representation would match our example WBTE001, but also
PC025239.1, or ZSM20100595. Similar considerations apply to how the
regular expression should be described for the species string.

Can we disable the use of regular expressions?

It can be, of course, that species names and lab codes within a single
fasta file do not adhere to a specific format, or they are formatted
in such a way that it is not easy to find a regular expression pattern
that works for all entries. The solution in such a case would be to
specify a regular expression that captures all.

The header format then reads:

{SPECIES}

the field for the regular expression for the ID or lab code, Regex ID,
can be left empty, and the regular expression for the species, Regex
SPECIES becomes:

.*

which captures all characters.

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fastachar	

 	
 	
 fastachar.fasta_doc	

 	
 	
 fastachar.fasta_io	

 	
 	
 fastachar.fasta_logic	

 	
 	
 fastachar.tkgui	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | U

_

 	
 	_value (fastachar.fasta_logic.Char attribute)

 	(fastachar.fasta_logic.State attribute)

A

 	
 	about_window() (fastachar.tkgui.Gui method)

 	Alignment (class in fastachar.fasta_io)

 	
 	alignment (fastachar.tkgui.Gui attribute)

 	are_sequences_of_equal_lengths() (fastachar.fasta_io.Alignment method)

C

 	
 	Case (class in fastachar.tkgui)

 	case (fastachar.tkgui.Gui attribute)

 	cb_about() (fastachar.tkgui.Gui method)

 	cb_b1_motion_lb() (fastachar.tkgui.Gui method)

 	cb_b1_release_lb() (fastachar.tkgui.Gui method)

 	cb_close_regex() (fastachar.tkgui.Gui method)

 	cb_clr() (fastachar.tkgui.Gui method)

 	cb_help() (fastachar.tkgui.Gui method)

 	cb_open_case_file() (fastachar.tkgui.Gui method)

 	cb_open_fasta_file() (fastachar.tkgui.Gui method)

 	cb_open_fasta_file_for_hdr() (fastachar.tkgui.Gui method)

 	cb_open_text_window() (fastachar.tkgui.Gui method)

 	cb_reset() (fastachar.tkgui.Gui method)

 	cb_run() (fastachar.tkgui.Gui method)

 	cb_save_case_file() (fastachar.tkgui.Gui method)

 	
 	cb_save_report() (fastachar.tkgui.Gui method)

 	cb_save_report_xls() (fastachar.tkgui.Gui method)

 	cb_set_regex() (fastachar.tkgui.Gui method)

 	cb_set_working_dir() (fastachar.tkgui.Gui method)

 	Char (class in fastachar.fasta_logic)

 	clear() (fastachar.fasta_io.ReportXLS method)

 	(fastachar.tkgui.Case method)

 	compute_mdcs() (fastachar.fasta_logic.SequenceLogic method)

 	config (fastachar.tkgui.ConfigFastachar attribute)

 	(fastachar.tkgui.Gui attribute)

 	CONFIG (in module fastachar.tkgui)

 	ConfigFastachar (class in fastachar.tkgui)

 	create_bindings() (fastachar.tkgui.Gui method)

 	create_layout() (fastachar.tkgui.Gui method)

 	create_menu() (fastachar.tkgui.Gui method)

 	cwd (fastachar.tkgui.Gui attribute)

D

 	
 	data (fastachar.tkgui.Case attribute)

 	
 	DEFAULT (in module fastachar.tkgui)

 	define_styles() (fastachar.fasta_io.ReportXLS method)

E

 	
 	error_window() (fastachar.tkgui.Gui method)

F

 	
 	fastachar (module)

 	fastachar.fasta_doc (module)

 	fastachar.fasta_io (module)

 	
 	fastachar.fasta_logic (module)

 	fastachar.tkgui (module)

 	filename (fastachar.fasta_io.Report attribute)

G

 	
 	generate_regex_dict() (fastachar.fasta_io.Alignment method)

 	get_home() (fastachar.tkgui.ConfigFastachar method)

 	get_masked_positions() (fastachar.fasta_logic.Sequence method)

 	get_path() (fastachar.tkgui.ConfigFastachar method)

 	
 	get_species_info() (fastachar.fasta_io.Alignment method)

 	get_species_list() (fastachar.fasta_io.Alignment method)

 	getcwd() (fastachar.tkgui.Gui method)

 	Gui (class in fastachar.tkgui)

H

 	
 	help_window() (fastachar.tkgui.Gui method)

I

 	
 	intersection_of_subsets() (fastachar.fasta_logic.State method)

 	
 	is_masked (fastachar.fasta_logic.Char attribute)

 	IUPAC (fastachar.fasta_logic.Char attribute)

L

 	
 	LIST_KWDS (fastachar.tkgui.Case attribute)

 	list_non_unique_characters_in_set() (fastachar.fasta_logic.SequenceLogic method)

 	list_unique_characters_in_set() (fastachar.fasta_logic.SequenceLogic method)

 	
 	load() (fastachar.fasta_io.Alignment method)

 	(fastachar.tkgui.Case method)

 	(fastachar.tkgui.ConfigFastachar method)

M

 	
 	main() (in module fastachar.tkgui)

 	mark_unit_length_states_within_set() (fastachar.fasta_logic.SequenceLogic method)

 	
 	move_items() (fastachar.tkgui.Gui method)

 	MyWorkbook (class in fastachar.fasta_io)

O

 	
 	open_case_file() (fastachar.tkgui.Gui method)

 	
 	open_fasta_file() (fastachar.tkgui.Gui method)

 	output_filename (fastachar.fasta_io.Report attribute)

P

 	
 	parse_hdr() (fastachar.fasta_io.Alignment method)

 	parse_line() (fastachar.tkgui.Case method)

 	
 	PATTERNS (fastachar.fasta_logic.Sequence attribute)

 	populate() (fastachar.tkgui.Case method)

 	populate_list_with_items() (fastachar.tkgui.Gui method)

R

 	
 	release_in_listbox() (fastachar.tkgui.Gui method)

 	remove_all_sheets() (fastachar.fasta_io.MyWorkbook method)

 	Report (class in fastachar.fasta_io)

 	report_footer() (fastachar.fasta_io.Report method)

 	(fastachar.fasta_io.ReportXLS method)

 	report_header() (fastachar.fasta_io.Report method)

 	(fastachar.fasta_io.ReportXLS method)

 	report_mdcs() (fastachar.fasta_io.Report method)

 	(fastachar.fasta_io.ReportXLS method)

 	
 	report_mdcs_summary() (fastachar.fasta_io.ReportXLS method)

 	report_nucs() (fastachar.fasta_io.Report method)

 	(fastachar.fasta_io.ReportXLS method)

 	ReportXLS (class in fastachar.fasta_io)

 	reportxls (fastachar.fasta_io.Report attribute)

 	(fastachar.tkgui.Gui attribute)

 	root (fastachar.tkgui.Gui attribute)

S

 	
 	save() (fastachar.fasta_io.ReportXLS method)

 	(fastachar.tkgui.Case method)

 	(fastachar.tkgui.ConfigFastachar method)

 	select_sequences() (fastachar.fasta_io.Alignment method)

 	select_sequences_from_list() (fastachar.fasta_io.Alignment method)

 	select_two_sequence_sets() (fastachar.fasta_io.Alignment method)

 	
 	Sequence (class in fastachar.fasta_logic)

 	SequenceLogic (class in fastachar.fasta_logic)

 	set_defaults() (fastachar.tkgui.ConfigFastachar method)

 	set_fasta_hdr_fmt() (fastachar.fasta_io.Alignment method)

 	setcwd() (fastachar.tkgui.Gui method)

 	State (class in fastachar.fasta_logic)

 	state (fastachar.fasta_logic.State attribute)

U

 	
 	update() (fastachar.fasta_logic.State method)

fastachar package

Submodules

fastachar.fasta_doc module

fastachar.fasta_io module

	
class fastachar.fasta_io.Alignment(sequences=None)

	Bases: object

Class to hold sequences

	
are_sequences_of_equal_lengths(sequences)

	Check whether all sequences are equally long.

	Parameters

	sequences (list of str) – contains a list of sequence characters.

	Returns

	True if all are equal length, False otherwise

	Return type

	boolean

	
generate_regex_dict(header_format, IDregex, SPECIESregex)

	Generate dictionaries containing the regex for fasta header parsing.

	Parameters

	
	header_format (str) – Regular expression for the header format. Must contain the litteral strings {ID} and {SPECIES}

	IDregex (str) – Regular expression that should match the IDs or lab codes.

	SPECIESregex (str) – Regular expression that should match the species names

	Returns

	
	pattern_dict (dict of {str : str}) – dictionary with the regex patterns

	regex_dict (dict of {str: re.compile}) – dictionary with compiled regular expressions.

Notes

The header_format string should contain both the litteral strings {ID} and {SPECIES}, which
are placeholders for the IDregex and SPECIESregex strings.

	
get_species_info()

	Return a dictionary mapping species name and lab codes.

	Returns

	dictionary of {str – species info with species name as key, IDs as values.

	Return type

	str}

	
get_species_list()

	Get a sorted list of species names.

	Returns

	list of sorted species names.
list of number of sequences in (sorted) species names

	Return type

	tuple of (list of str, list of int)

	
load(fn)

	Load sequence data from file

	Parameters

	fn (str) – filename of file to open

	Returns

	
	errorcode (int) – errocode indicating what went wrong if something did go wrong
Returns 0 if OK, otherwise see error codes above.

	arg (string) – Error message

	
parse_hdr(hdr, **kwds)

	Parse the header string of the sequence

	Parameters

	
	hdr (string) – fasta header to parse

	**kwds – if available, pattern_dict and regex_dict are extracted from the parameter list,
otherwise default values are used.

	Returns

	
	IDstring (string) – a string representation of the ID or lab code

	species (string) – the name of the species

	This method tries to parse the header of a sequence as read from a fasta file.

	
select_sequences(regex, invert=False, exclude=None)

	select sequences using regular expressions

	Parameters

	
	regex (string) – a regular expression or exact string to match the species names

	invert (bool) – if True, the inverted selection is returned (not matching species)

	exclude (None or a regular expression) – exclude the matches that are included by the regex parameter.

	Returns

	List of sequences.

	Return type

	list of fastachar.fasta_logic.Sequence

This method can be used to select a set of species using
regular expressions. All species are returned that match the
spefified regex, or all except these if invert is set to
True. An optional exlude regex can be given to filter the list
further. This will affect the behaviour of the invert option,
see the note below.

Notes

If an expression is given for the exlude parameter and
invert==True, then those sequences that match the regex
selection AND the exclude selection is returned.

	
select_sequences_from_list(itemlist)

	Selects sequence objects from a list of species names

	Parameters

	itemlist (list of strings) – list of species names

	Returns

	list of – list of matching sequences.

	Return type

	class” fastachar.fasta_logic.Sequence

	
select_two_sequence_sets(regex)

	Return two selections of sequences, one that matches regex, and one that does not.

	Parameters

	regex (string) – a regular expression or exact string

	Returns

	
	set_A (fastachar.fasta_logic.Sequence) – list of matching sequences

	set_B (fastachar.fasta_logic.Sequence) – list of non-matching sequences

Notes

The union of the two sets is identical to the whole data set.

	
set_fasta_hdr_fmt(header_format='{ID}[_]{SPECIES}', IDregex='[A-Za-z0-9_]+[0-9\\.]+[A-Za-z0-9]*', SPECIESregex='[A-Za-z_]+')

	Sets the regular expressions used to parse the fasta headers

	Parameters

	
	header_format (str) – regular expression and containing the strings {ID} and {SPECIES}

	IDregex (str) – regular expression matching IDs and lab codes

	SPECIESregex (str) – regular expression matchin species names.

Notes

If it cannot get to work to parse the header strings correctly, a workaround
can be to specify the header_format as ‘{SPECIES}’, and let the SPECIESregex
capture anything by setting it to ‘.+’

	
class fastachar.fasta_io.MyWorkbook(*p, **kw)

	Bases: xlwt.Workbook.Workbook

	
remove_all_sheets()

	

	
class fastachar.fasta_io.Report(filename=None, output_filename=None, reportxls=None)

	Bases: object

Class for reporting results

	Parameters

	
	filename (str, optional) – filename of fasta file used for data input

	output_filename (str or None, optional) – name of output filename. If not None, then output is sent to stdout.

	reportxls (ReportXLS or None, optional) – instance of an excel worksheet object

	
filename

	filename of fasta file used for data input

	Type

	str, optional

	
output_filename

	name of output filename. If not None, then output is sent to stdout.

	Type

	str or None, optional

	
reportxls

	instance of an excel worksheet object

	Type

	ReportXLS or None, optional

	
report_footer()

	Write footer of the report

	
report_header(set_A, set_B, method)

	Write header of the report

	Parameters

	
	set_A (list of fastachar.fasta_logic.Sequence) – Sequence list A

	set_B (list of fastachar.fasta_logic.Sequence) – Sequence list B

	method (str) – Description of operation method

	
report_mdcs(set_name, set_A, set_B, mdcs, method)

	Write results of molecular diagnostic characters

	Parameters

	
	set_name (str) – name of the set (List A for example)

	set_A (list of fastachar.fasta_logic.Sequence) – Sequence list A

	set_B (list of fastachar.fasta_logic.Sequence) – Sequence list B

	mdcs (list of tuples of (int, fastachar.fasta_logic.State)) – list of position and State tuples, i.e. molecular diagnostic characters

	method (str) – short description of operation method.

	
report_nucs(set_name, set_A, nucs)

	Report non-unique characters in list of sequences

	Parameters

	
	set_name (str) – Name of the set

	set_A (list of fastachar.fasta_logic.Sequence) – list of sequences

	nucs (list of tuples of (int, fastachar.fasta_logic.State)) – list of position and State tuples

	
class fastachar.fasta_io.ReportXLS

	Bases: object

A class to report results in Excel format.

	
clear()

	Remove all worksheets

	
define_styles()

	Define some styles used

	Returns

	s

	Return type

	dict of styles

	
report_footer()

	Report Header

Notes

Not implemented.

	
report_header(set_A, set_B, method)

	Write header of the report

	Parameters

	
	set_A (list of fastachar.fasta_logic.Sequence) – Sequence list A

	set_B (list of fastachar.fasta_logic.Sequence) – Sequence list B

	method (str) – Description of operation method

	
report_mdcs(set_name, set_A, set_B, mdcs, method)

	Write results of molecular diagnostic characters

	Parameters

	
	set_name (str) – name of the set (List A for example)

	set_A (list of fastachar.fasta_logic.Sequence) – Sequence list A

	set_B (list of fastachar.fasta_logic.Sequence) – Sequence list B

	mdcs (list of tuples of (int, fastachar.fasta_logic.State)) – list of position and State tuples, i.e. molecular diagnostic characters

	method (str) – description of operation method

	
report_mdcs_summary(set_A, set_B, mdcs, method)

	

	
report_nucs(set_name, nucs)

	Report non-unique characters in list of sequences

	Parameters

	
	set_name (str) – Name of the set

	set_A (list of fastachar.fasta_logic.Sequence) – list of sequences

	nucs (list of tuples of (int, fastachar.fasta_logic.State)) – list of position and State tuples

	
save(fn)

	Save to results file

	Parameters

	fn (str) – name of the file to write the results into

Notes

If the workbook has no data, nothing is saved, and any errors are silently ignored.

fastachar.fasta_logic module

	
class fastachar.fasta_logic.Char(c, masked)

	Bases: set

A character object representation a nucleotide in a sequence

The object is initialised with a character from the IUPAC list. Ambiguous characters,
such as Y and W are expanded into their base nucleotides.

	Parameters

	
	c (str) – IUPAC character

	subst_c (str) – IUPAC character substitute for logical operations.

	
_value

	(non-expanded) character representation of nucleotide character.

	Type

	str

Notes

The (IUPAC) characters supported are:

A
T
C
G
- (gap)

The ambiguous characters and their expansions:

Y -> C and T
R -> A and G
W -> A and T
S -> G and C
K -> T and G
M -> C and A

D -> A, G and T
V -> A, G and C
H -> A, C and T
B -> C, G and T

The masking characters X and N expand to A, G, T and G.

	
IUPAC = {'-': '-', 'A': 'A', 'B': 'CGT', 'C': 'C', 'D': 'AGT', 'G': 'G', 'H': 'ACT', 'K': 'TG', 'M': 'CA', 'N': 'ACTG', 'R': 'AG', 'S': 'GC', 'T': 'T', 'V': 'AGC', 'W': 'AT', 'X': 'ACTG', 'Y': 'CT'}

	

	
is_masked

	Evaluates to True if this character is a masked character.

	
class fastachar.fasta_logic.Sequence(ID, species, sequence_chars)

	Bases: collections.UserList

A class to hold the information of a single sequence

	Parameters

	
	ID (str) – ID or lab code

	species (str) – species name

	sequences_chars (str) – ascii representation of the sequence

	
PATTERNS = (re.compile('^[N]+'), re.compile('[N]+$'), re.compile('^[X]+'), re.compile('[X]+$'), re.compile('^[-]+'), re.compile('[-]+$'))

	

	
get_masked_positions(sequence_chars)

	Get masked positions

Returns the positions where this sequences has a continuous block of N, X or - characters,
either leading, or trailing.

	Parameters

	sequence_chars (str) – string of sequence characters

	Returns

	m – True where masked N appears.

	Return type

	list of int

	
class fastachar.fasta_logic.SequenceLogic

	Bases: object

Class for state comparison

	
compute_mdcs(set_A, set_B, method='MDC')

	Computes molecular diagnostic characters

	Parameters

	
	set_A (list of Char) – list of sequences in list A

	set_B (list of Char) – list of sequence in list B

	method ({"MDC", "potential_MDC_only"}) – method of comparison.

	Returns

	Each tuple contains the position, its state for list A, and its state for list B
sequences.

	Return type

	list of tuples of (int, State, State)

This method computes molecular diagnostic characters by comparing the sequences in list
set_A and set_B. Two different criteria for comparison can be selected: return molecular
diagnostic characters, or only the potential modlecular diagnostic characters.

	Method determining the comparison method:

	
	
	“MDC” returns Molecular Diagnostic Characters only

	conditions 1 and 2 are honoured

	
	“potential_MDC_only” return MDCs only

	condition 2 is honoured, condition 1 is violated.

	
list_non_unique_characters_in_set(aset)

	list non-unique characters in set.

	Parameters

	aset (list of Char) – list of sequences

	Returns

	Returns list of tuples of position and characters, for which more
than one different characters were found.

	Return type

	list of tuple of (int, State)

	
list_unique_characters_in_set(aset)

	list where aset has unique characters

	Parameters

	aset (list of Char) – list of sequences

	Returns

	Returns list of tuples of position and characters, for which only
one characeter was found.

	Return type

	list of tuple of (int, State)

	
mark_unit_length_states_within_set(aset)

	marks for each position whether this position has a unique character

	Parameters

	aset (list of :obj: Char) –

	Returns

	a list of tuples with first element True for unique character, and
second element the character(s) on this position of State.

	Return type

	list of tuple of (bool, State)

	
class fastachar.fasta_logic.State(chars)

	Bases: set

	The class’ purpose is to hold a number of Char objects

	and treat these as a set.

	Parameters

	chars (iterable of :obj: Char) –

	
_value

	ascii representation of characters.

	Type

	list of str

	
intersection_of_subsets()

	

	
state

	

	
update(s)

	update the set with a new element

	Parameters

	s (instance of a Char object) –

fastachar.tkgui module

Module implementing the graphical interface

	
fastachar.tkgui.CONFIG

	default settings for the configuration files.

	Type

	dict of {string:string}

	
fastachar.tkgui.DEFAULT

	default regular expressions

	Type

	dict

	
class fastachar.tkgui.Case

	Bases: object

Class to hold the information for case files

	
data

	dictionary containing all information to write to file.

	Type

	dict

	
LIST_KWDS = ['species', 'setA', 'setB']

	

	
clear()

	Clear data

	
load(filename)

	Load a case file

	Parameters

	filename (str) – name of cae file

	Returns

	
	error (int) – error code

	arg (str) – error message

	
parse_line(line)

	Parse a line read from the case file

	Parameters

	line (str) – header string

	Returns

	
	kwd (str) – attribute of the configuration

	value (str or list of str) – the value of the attribute

	
populate(filename, species, setA, setB, operation, regex_header_format, regex_id, regex_species)

	Write the case information into data dictionary

	Parameters

	
	filename (str) – Name of input fasta file

	species (list of str) – Names of all species read

	setA (list of fastachar.fasta_logic.Sequence) – list of sequences in list A

	setB (list of fastachar.fasta_logic.Sequence) – list of sequences in list B

	operation (int) – operation of comparison

	regex_header_format (str) – regular expression for the header format

	regex_id (str) – regular expression for matching the ID or lab codes

	regex_species (str) – regular expression for matching the name of the species.

	
save(filename)

	Save a case file

	Parameters

	filename (str) – Name of the case file

	
class fastachar.tkgui.ConfigFastachar

	Bases: object

Class to contain the configuration of the Fastachar gui

	
config

	A ConfigParser object holding the configuration read from file.

	Type

	configparser.ConfigParser

	
get_home()

	Gets the user’s home directory

	Returns

	home_dir – Home directory

	Return type

	str

	
get_path()

	Return the full path to the configuration file.

	Returns

	path

	Return type

	str

	
load()

	Load and parse configuration file

Upon calling this method, the configuration dictionary self.config gets
populated.

	
save()

	Save the the current configuration to file.

This method writes self.config to file.

	
set_defaults(section, **p)

	Sets the default values for the configuration file

	Parameters

	
	section (str) – section name of the configuration

	**p – optional keywords that are part of the section

	
class fastachar.tkgui.Gui

	Bases: object

Class defining the grahical user interface

	
root

	main window

	Type

	Tk.Tk()

	
config

	Configuration of FastaChar

	Type

	ConfigFastachar

	
cwd

	current working directory

	Type

	str

	
alignment

	aligned sequences.

	Type

	fasta_io.Alignment

	
case

	Case object

	Type

	Case

	
reportxls

	object for reporting results as excel work sheets.

	Type

	fasta_io.ReportXLS

	
about_window()

	Create and populate the About window

	
cb_about()

	Callback to call about window

	
cb_b1_motion_lb(event)

	

	
cb_b1_release_lb(event)

	

	
cb_close_regex(window, v)

	callback to close regex window

	Parameters

	
	window – window to close

	v – list with Tk variables holding the regexes.

Notes

If a fasta file is marked for successful opening, it will be read.

	
cb_clr()

	Callback to clear output

	
cb_help()

	Callback to call help window

	
cb_open_case_file()

	Callback to open case file.

	
cb_open_fasta_file()

	Callback top open a fasta file.

	
cb_open_fasta_file_for_hdr(parent, regexs)

	Callback function to open fasta char for reading headers

	Parameters

	
	parent – parent window

	regexes (list) – list of regular expressions

Notes

This method sets fasta_file.
Depending on the results of reading this method sets fasta_file_is_valid.

	
cb_open_text_window(lines)

	Create a general text window

	Parameters

	lines (list of str) – Text to be displayed

	
cb_reset(v)

	Callback to reset the regular expression to the default values.

	
cb_run()

	Callback to run operation and do the comparison.

	
cb_save_case_file()

	Callback to save the case file.

	
cb_save_report()

	Callback to save report.

	
cb_save_report_xls()

	Callback to save report as xls file.

	
cb_set_regex()

	Callback function to allow the user to set the regular expressions

Notes

This method sets fasta_file initially to None and it may be set to a str
when by other methods called from this callback.

	
cb_set_working_dir()

	Callback to set the working directory

	
create_bindings()

	Create the key bindings

	
create_layout()

	Create the main layout of the application

	
create_menu()

	Create the Menu entries

	
error_window(err_code, arg='', parent=None)

	Create and populate an error window

	Parameters

	
	err_code (int) – error code

	arg (str) – error message to be displayed.

	
getcwd()

	Get current working directory

	Returns

	cwd – current working directory

	Return type

	str

	
help_window()

	Create and populate the Help window

	
move_items(lb_from, lb_to)

	Move items from one list to another

	Parameters

	
	lb_from – from list (listbox)

	lb_to – to list (listbox)

	
open_case_file(case_file)

	Read and process a case file.

	
open_fasta_file()

	Read and process a fasta file.

	
populate_list_with_items(items, lb, delete_all=True)

	

	
release_in_listbox(event)

	

	
setcwd(cwd)

	Set current working directory

	Parameters

	cwd (str) – current working directory

	
fastachar.tkgui.main()

	Main function starting the GUI

Module contents

fastachar

	fastachar package
	Submodules

	fastachar.fasta_doc module

	fastachar.fasta_io module

	fastachar.fasta_logic module

	fastachar.tkgui module

	Module contents

 _static/ajax-loader.gif

_images/parsing.png
Fastachar

Header

SWBET001 Nototeredo_norvagica Ms_TK
SWBET002_Nototeredo_norvagica Ms_TK
SWBET004_Nototeredo_norvagica Ms_TK
SWBET005_Nototeredo_norvagica Ms_TK
SWBET006_Nototeredo_norvagica Ms_TK
SWBET009_Nototeredo_norvagica Ms_TK
SWBETO10_Nototeredo_norvagica Ms_TK
SWBET032_Nototeredo_norvagica Pn_FR
SWBET036_Nototeredo_norvagica Bd_FR
SWBET042_Lyrodus_pedicellatus Mb_FR
SWBET043_Lyrodus_pedicellatus Mb_FR
SWBETO61_Lyrodus_pedicellatus_Bd_FR
SWBETO78_Lyrodus_pedicellatus_Mb_FR
SWBET087_Lyrodus_pedicellatus_TL_FR
SWBET090_Lyrodus_pedicellatus_TL_FR
SWBET108_Lyrodus_pedicellatus TL FR
SWBET118_Lyrodus_pedicellatus TL_FR
SWBET129_Bankia_carinata Ms_TK

SWBETI31 Bankia_carinata Ms_TK

SWBET130_Lyrodus_pedicellatus_Ms_TK
SWBET133_Lyrodus_pedicellatus Ms_TK
SWBET134_Lyrodus_pedicellatus Ms_TK
>WBET135 Lyrodus pedicellatus Ms TK

™

WBET00L
WBET002
WBET004
WBET00S
WBET006
WBET009
WBET010
WBET032
WBET036
WBET042
WBET043
WBETO61
WBET078
WBET087
WBET0%0
WBET108
WBET118
WBET129
WBET131
WBET130
WBET133
WBET134
WBET135

Species

Nototeredo_norvagica Ms_TK
Nototeredo_norvagica Ms_TK
Nototeredo_norvagica Ms_TK
Nototeredo_norvagica Ms_TK
Nototeredo_norvagica Ms_TK
Nototeredo_norvagica Ms_TK
Nototeredo_norvagica Ms_TK
Nototeredo_norvagica_Pn_FR
Nototeredo_norvagica Bd_FR
Lyrodus_pedicellatus Mb_FR
Lyrodus_pedicellatus Mb_FR
Lyrodus_pedicellatus Bd_FR
Lyrodus_pedicellatus Mb_FR
Lyrodus_pedicellatus_TL_FR
Lyrodus_pedicellatus TL_FR
Lyrodus_pedicellatus TL_FR
Lyrodus_pedicellatus TL_FR
Bankia_carinata Ms_TK

Bankia_carinata Ms_TK

Lyrodus_pedicellatus_Ms_TK
Lyrodus_pedicellatus_Ms_TK
Lyrodus_pedicellatus_Ms_TK
Lyrodus pedicellatus Ms TK

Close

=

_images/regex.png
Header format:

Regex ID:

Regex SPECIES:

Fastachar

{ID}{ _I{SPECIES}

[AZaz09\1+

[azaz_ 1+

ok | cancel | previewfile | Reset |

Help |

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/main_window.png
File Help Output

Fastachar

Unselected Species

Bankia_carinata_Ms_TK (2)
Nototeredo_norvagica_Atl_TK (1)
Nototeredo_norvagica_Bd_FR (1)
Nototeredo_norvagica_Ms_TK (7)
Nototeredo_norvagica_Pn_FR (1)
Teredothyra_dominicensis_Atl_TK (5)

Selected species list A

J Lyrodus_pedicellatus_Ms_TK (4)
|

K 3

Selected species list B

Lyrodus_pedicellatus_Bd_FR (1)
Lyrodus_pedicellatus Mb_FR (3)
lLyrodus_pedicellatus TI_FR (4)

K

Operation

« Determine MDCs for species list A
- Determine potential MDCs for species list A

2 Lyrodus pedicellatus Ms TK (WBET133)
3 Lyrodus_pedicellatus_Ms_TK (WBET134)
4 Lyrodus_pedicellatus_Ms_TK (WBET135)

List B:

1 Lyrodus_pedicellatus_Mb_FR (WBET042)
2 Lyrodus_pedicellatus_Mb_FR (WBET043)
Lyrodus_pedicellatus_Bd_FR (WBET061)
Lyrodus_pedicellatus_Mb_FR (WBET078)
Lyrodus_pedicellatus_Tl_FR (WBET087)
Lyrodus_pedicellatus_T1_FR (WBET090)
Lyrodus_pedicellatus_Tl_FR (WBET108)
Lyrodus_pedicellatus_Tl_FR (WBET118)

The species in List A have the following MDCs:

Process

position: character(s) | characters for species in List B

Clear output

_static/file.png

nav.xhtml

 Table of Contents

 		
 FastaChar’s documentation

 		
 What is Fastachar for and how to use it?

 		
 Example

 		
 Preparation

 		
 Running Fastachar

 		
 Opening a fasta file

 		
 Selecting species for lists A and B

 		
 Selecting the operation

 		
 Case files

 		
 Output

 		
 Help

 		
 Installation

 		
 Linux

 		
 Windows

 		
 Programming with fastachar

 		
 Example script

 		
 Regular expressions in FastaChar

 		
 What is a regular expression anyway?

 		
 How do we use regular expressions in FastaChar?

 		
 Example

 		
 Can we disable the use of regular expressions?

_static/parsing.png
Fastachar

Header

SWBET001 Nototeredo_norvagica Ms_TK
SWBET002_Nototeredo_norvagica Ms_TK
SWBET004_Nototeredo_norvagica Ms_TK
SWBET005_Nototeredo_norvagica Ms_TK
SWBET006_Nototeredo_norvagica Ms_TK
SWBET009_Nototeredo_norvagica Ms_TK
SWBETO10_Nototeredo_norvagica Ms_TK
SWBET032_Nototeredo_norvagica Pn_FR
SWBET036_Nototeredo_norvagica Bd_FR
SWBET042_Lyrodus_pedicellatus Mb_FR
SWBET043_Lyrodus_pedicellatus Mb_FR
SWBETO61_Lyrodus_pedicellatus_Bd_FR
SWBETO78_Lyrodus_pedicellatus_Mb_FR
SWBET087_Lyrodus_pedicellatus_TL_FR
SWBET090_Lyrodus_pedicellatus_TL_FR
SWBET108_Lyrodus_pedicellatus TL FR
SWBET118_Lyrodus_pedicellatus TL_FR
SWBET129_Bankia_carinata Ms_TK

SWBETI31 Bankia_carinata Ms_TK

SWBET130_Lyrodus_pedicellatus_Ms_TK
SWBET133_Lyrodus_pedicellatus Ms_TK
SWBET134_Lyrodus_pedicellatus Ms_TK
>WBET135 Lyrodus pedicellatus Ms TK

™

WBET00L
WBET002
WBET004
WBET00S
WBET006
WBET009
WBET010
WBET032
WBET036
WBET042
WBET043
WBETO61
WBET078
WBET087
WBET0%0
WBET108
WBET118
WBET129
WBET131
WBET130
WBET133
WBET134
WBET135

Species

Nototeredo_norvagica Ms_TK
Nototeredo_norvagica Ms_TK
Nototeredo_norvagica Ms_TK
Nototeredo_norvagica Ms_TK
Nototeredo_norvagica Ms_TK
Nototeredo_norvagica Ms_TK
Nototeredo_norvagica Ms_TK
Nototeredo_norvagica_Pn_FR
Nototeredo_norvagica Bd_FR
Lyrodus_pedicellatus Mb_FR
Lyrodus_pedicellatus Mb_FR
Lyrodus_pedicellatus Bd_FR
Lyrodus_pedicellatus Mb_FR
Lyrodus_pedicellatus_TL_FR
Lyrodus_pedicellatus TL_FR
Lyrodus_pedicellatus TL_FR
Lyrodus_pedicellatus TL_FR
Bankia_carinata Ms_TK

Bankia_carinata Ms_TK

Lyrodus_pedicellatus_Ms_TK
Lyrodus_pedicellatus_Ms_TK
Lyrodus_pedicellatus_Ms_TK
Lyrodus pedicellatus Ms TK

Close

=

_static/plus.png

_static/main_window.png
File Help Output

Fastachar

Unselected Species

Bankia_carinata_Ms_TK (2)
Nototeredo_norvagica_Atl_TK (1)
Nototeredo_norvagica_Bd_FR (1)
Nototeredo_norvagica_Ms_TK (7)
Nototeredo_norvagica_Pn_FR (1)
Teredothyra_dominicensis_Atl_TK (5)

Selected species list A

J Lyrodus_pedicellatus_Ms_TK (4)
|

K 3

Selected species list B

Lyrodus_pedicellatus_Bd_FR (1)
Lyrodus_pedicellatus Mb_FR (3)
lLyrodus_pedicellatus TI_FR (4)

K

Operation

« Determine MDCs for species list A
- Determine potential MDCs for species list A

2 Lyrodus pedicellatus Ms TK (WBET133)
3 Lyrodus_pedicellatus_Ms_TK (WBET134)
4 Lyrodus_pedicellatus_Ms_TK (WBET135)

List B:

1 Lyrodus_pedicellatus_Mb_FR (WBET042)
2 Lyrodus_pedicellatus_Mb_FR (WBET043)
Lyrodus_pedicellatus_Bd_FR (WBET061)
Lyrodus_pedicellatus_Mb_FR (WBET078)
Lyrodus_pedicellatus_Tl_FR (WBET087)
Lyrodus_pedicellatus_T1_FR (WBET090)
Lyrodus_pedicellatus_Tl_FR (WBET108)
Lyrodus_pedicellatus_Tl_FR (WBET118)

The species in List A have the following MDCs:

Process

position: character(s) | characters for species in List B

Clear output

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/regex.png
Header format:

Regex ID:

Regex SPECIES:

Fastachar

{ID}{ _I{SPECIES}

[AZaz09\1+

[azaz_ 1+

ok | cancel | previewfile | Reset |

Help |

